鑄鐵中碳化硅的預(yù)處理
鑄鐵中碳化硅的預(yù)處理
一、鑄鐵中加入碳化硅的優(yōu)點(diǎn)
沖天爐或電爐熔煉鐵液,加入預(yù)處理劑SiC的優(yōu)點(diǎn)很多。加入熔爐內(nèi)的碳化硅轉(zhuǎn)化成鑄鐵的碳和硅,一是提高碳當(dāng)量;二是加強(qiáng)了鐵液的還原性,減輕銹蝕爐料的不利作用。加入碳化硅可以防止碳化物析出,增加鐵素體量,使鑄鐵組織致密,顯著提高加工性能。增加球墨鑄鐵單位面積石墨球數(shù),提高球化率。減少非金屬夾雜物和熔渣,消除縮松,消除皮下氣孔也有良好的作用。
二、碳化硅預(yù)處理作用
2.1形核原理:
在Fe-C共晶系中,灰鑄鐵在共晶凝固階段由于石墨的熔點(diǎn)高,奧氏體借助石墨析出。以每個(gè)石墨核心為中心所形成的石墨+奧氏體兩相共生共長(zhǎng)的共晶團(tuán)。存在于鑄鐵熔液中的亞微觀石墨聚集體、未熔的石墨微粒、某些高熔點(diǎn)硫化物、氧化物、碳化物、氮化物顆粒等,都可能成為石墨的非均質(zhì)晶核。
鐵液中石墨的析出必須經(jīng)歷形核和生長(zhǎng)兩個(gè)過程。石墨的形核有均質(zhì)形核和非均質(zhì)形核兩種方式。
1、均質(zhì)形核亦稱自生晶核。鐵液中有大量起伏不定的,超過臨界晶核尺寸的,有序排列的碳原子集團(tuán),可能成為均質(zhì)晶核。
2、實(shí)驗(yàn)證明均質(zhì)晶核的過冷度很大,必須主要依靠非均質(zhì)晶核作為鐵液中石墨的生核劑。鑄鐵熔液中存在大量外來質(zhì)點(diǎn),成為石墨形核基底。
碳化硅在鐵液內(nèi)分解成碳和硅比鐵液本身含有的碳和硅的內(nèi)能大,鐵液本身所含的Si溶于奧氏體中,球墨鑄鐵鐵液中的碳,部分在鐵液中形成石墨球,部分在奧氏體中尚未析出。因此碳化硅的加入,有很好的脫氧作用。
Si + O2 → SiO2 (1)
MgO + SiO2 → MgO?SiO2 (2)
2MgO + 2SiO2 → 2MgO?2SiO2 (3)
當(dāng)經(jīng)過含有Ca、Ba、Sr及Al與硅鐵的孕育合金鐵液處理后,得到:
MgO?SiO2 + X → XO?SiO2 + Mg (4)
4(2MgO?2SiO2)+ 3X+ 6Al → 3(XO?Al2O3?2SiO2)+ 8Mg(5)
式中 X——Ca、Ba、Sr。
反應(yīng)產(chǎn)物XO?SiO2和XO?Al2O3?SiO可以在MgO?SiO2及2MgO?2SiO2基底上形成面晶,由于石墨與XO?SiO2和XO?Al2O3?SiO2失配度低,利于石墨形核,有很好的石墨化作用。能很好的改善加工性能和提高力學(xué)性能的作用。
2.2 非平衡石墨的預(yù)孕育:
通過孕育來擴(kuò)大非均質(zhì)形核范圍,鐵液中非均質(zhì)形核的作用:
①促進(jìn)共晶凝固階段C大量析出并形成石墨,促進(jìn)石墨化;
②減小鐵液過冷度,減少白口傾向;
③增加灰鑄鐵共晶團(tuán)數(shù)或增加球墨鑄鐵石墨球數(shù)。
SiC是爐料熔煉過程中加入的。碳化硅熔點(diǎn)2700℃,在鐵液中不熔化,只按下列反應(yīng)式融熔于鐵液。
SiC+Fe→FeSi+C(非平衡石墨)(6)
式中SiC里的Si與Fe結(jié)合,余下的C就是非平衡石墨,作為石墨析出的核心。非平衡石墨使鐵液中C不均勻分布,局部C元素過高,微區(qū)會(huì)出現(xiàn)“碳峰”。這種新生的石墨有很高的活性,它與碳的失配度為零,因此很容易吸收鐵液中的碳,孕育效果極其優(yōu)越。由此可以看出碳化硅就是這樣一種硅基生核劑。
鑄鐵熔煉時(shí)加入碳化硅,對(duì)于灰鑄鐵,非平衡石墨的預(yù)孕育,大量生成共晶團(tuán)并提高生長(zhǎng)溫度(減小相對(duì)過冷度),有利于形成A型石墨;晶核數(shù)量增加,使片狀石墨細(xì)小,提高石墨化程度減少白口傾向,從而提高力學(xué)性能。對(duì)于球墨鑄鐵,結(jié)晶核心增多使石墨球數(shù)增加,球化率得以提高。
2.3 消除E型石墨過共晶灰鑄鐵:
C型、F型初生石墨在液相形成,由于生長(zhǎng)過程不受奧氏體干擾,一般情況下,容易長(zhǎng)成大片狀且分枝少的C型石墨;薄壁鑄件快速冷卻時(shí),石墨會(huì)分叉生長(zhǎng)成星狀的F型石墨。
共晶凝固階段生長(zhǎng)的片狀石墨,在不同化學(xué)成分和不同過冷條件下,生成不同形態(tài)和不同分布的A、B、E、D型石墨。
A型石墨在過冷度不大和成核能力較強(qiáng)的共晶團(tuán)內(nèi)生成,在鑄鐵中均勻分布。細(xì)片狀珠光體中,石墨長(zhǎng)度越小,抗拉強(qiáng)度越高,適用于機(jī)床及各種機(jī)械鑄件。
D型石墨為點(diǎn)、片狀的枝晶間石墨,呈無方向性分布。D型石墨鑄鐵鐵素體量高,力學(xué)性能受影響。但D型石墨鑄鐵奧氏體枝晶多,石墨短小卷曲,共晶團(tuán)呈球團(tuán)形,所以與相同基體A型石墨鑄鐵相比,往往具有較高的強(qiáng)度。
E型石墨是一種比A型石墨短小的片狀石墨。與D型石墨一樣位于枝晶間,統(tǒng)稱為枝晶石墨。E墨容易在碳當(dāng)量低(亞共晶程度大)、奧氏體枝晶多而發(fā)達(dá)的鑄鐵中產(chǎn)生。這時(shí),共晶團(tuán)與枝晶交叉生長(zhǎng),由于枝晶間共晶鐵液數(shù)量較少,析出的共晶石墨只有沿著枝晶方向分布,具有明顯的方向性。形成E型石墨的過冷度大于A型石墨小于D型石墨,它的粗細(xì)、長(zhǎng)短處于A、D型石墨之間。E型石墨不屬于過冷石墨,經(jīng)常與D型石墨伴生。E型石墨的方向性枝晶間分布,使鑄鐵很容易在較小的外力作用下,沿著石墨排列方向呈帶狀脆斷。所以出現(xiàn)E型石墨,用手可以掰斷小型鑄件的邊角,鑄件強(qiáng)度大大下降。隨著含碳量的增加,形成細(xì)小枝晶間石墨所必須的冷卻速度提高了,產(chǎn)生枝晶間石墨的可能性減少了。熔液高度過熱以及長(zhǎng)時(shí)間保溫會(huì)使過冷度增大,從而提高枝晶生長(zhǎng)速度,使枝晶變長(zhǎng),方向性更明顯。用SiC對(duì)鐵液做預(yù)孕育處理時(shí),同時(shí)減小初生奧氏體的過冷度,此時(shí)觀察到短的奧氏體枝晶。消除了E型石墨產(chǎn)生的結(jié)構(gòu)基礎(chǔ)。
2.4 提高鑄鐵質(zhì)量
對(duì)于球墨鑄鐵,在球化劑加入量相同的情況下,用碳化硅進(jìn)行預(yù)處理,鎂的最終收得率較高。用碳化硅預(yù)處理的鐵液,如果保持鑄件殘留鎂量大致相同,球化劑的加入量可以減少10%,球墨鑄鐵的白口傾向得到緩解。
加入的SiC靠近爐壁,生成的SiO2會(huì)在爐壁沉積增加爐壁厚度。在熔煉的高溫下,SiO2將發(fā)生式(4)的脫碳反應(yīng),式(5)、(6)的渣化反應(yīng)。
(7)3SiC + 2Fe2O3 = 3SiO2 +4Fe +3C
(8)C + FeO → Fe + CO ↑
(9)(SiO2)+ 2C = [Si] + 2CO(氣態(tài))
(10)SiO2 + FeO → FeO?SiO2 (渣)
(11)Al2O3 + SiO2 → Al2O3?SiO2 (渣)
碳化硅的脫氧作用,使得脫氧產(chǎn)物在鐵液中有一系列冶金反應(yīng),減輕銹蝕爐料中氧化物的有害影響,有效的凈化鐵液。
2.5 碳化硅的使用方法:冶金級(jí)的碳化硅,純凈度在88%-90%之間,在計(jì)算增碳與增硅時(shí)首先要扣除雜質(zhì)量。根據(jù)碳化硅的分子式,很容易得出:
增碳:C= C/(C + Si)= 12 / (12 + 28) = 30% (12)
增硅:Si= Si/(C + Si)= 28 / (12 + 28) = 70%(13)
碳化硅的加入量,通常只要加入鐵液量的0.8%-1.0%就可以了。碳化硅的加入方法是:電爐熔煉鐵液,在熔融1/3爐料時(shí),加入到中部,盡量不要接觸爐壁,然后繼續(xù)加入爐料熔煉。沖天爐熔煉鐵液,可以將粒度1-5mm的碳化硅與適量水泥或其它粘接劑混合,加水制成團(tuán)塊狀,經(jīng)過烈日曬干后即可按批料比例下爐使用。
相關(guān)資訊
最新產(chǎn)品
同類文章排行
- 碳化硅微粉:噴砂與磨料行業(yè)中的明星材料
- 碳化硅、白剛玉等磨料微粉是如何進(jìn)行顆粒整形?
- 大面積碳化硅陶瓷膜層化學(xué)氣相沉積(CVD)技術(shù)
- 碳化硅陶瓷反應(yīng)連接技術(shù)
- 高精度碳化硅陶瓷制品無模成型工藝
- 碳化硅陶瓷凝膠注模成型工藝
- 集成電路制造裝備用精密陶瓷結(jié)構(gòu)件的特點(diǎn)
- 固相燒結(jié)碳化娃(SSiC)優(yōu)缺點(diǎn)
- 如何實(shí)現(xiàn)碳化硅晶圓的高效低損傷拋光?
- 一張圖:碳化硅這樣提純,能行嗎?